On some dual frames multipliers with at most countable spectra

نویسندگان

چکیده

A dual frames multiplier is an operator consisting of analysis, multiplication and synthesis processes, where the analysis are made by two in a Hilbert space, respectively. In this paper we investigate spectra some multipliers giving, particular, conditions to be at most countable. The contribution extends results available literature about Bessel with symbol decaying zero Riesz bases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On dual shearlet frames

In This paper, we give a necessary condition for function in $L^2$ with its dual to generate a dual shearlet tight frame with respect to admissibility.

متن کامل

Mortar Finite Elements with Dual Lagrange Multipliers: Some Applications

Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We consider mortar techniques with dual Lagrange multiplier spaces to couple different discretization schemes. It is well known that the discretization error for linear mortar finite elements in the energy norm is of order h. Here, we apply these techniques to curvilinear b...

متن کامل

on dual shearlet frames

in this paper, we give a necessary condition for function in l^2with its dual to generate a dual shearlet tight frame with respect to admissibility.

متن کامل

Integer-Magic Spectra of Trees with Diameters at most Four

For any k ∈ N, a graph G = (V,E) is said to be Zk-magic if there exists a labeling l : E(G) −→ Zk − {0} such that the induced vertex set labeling l : V (G) −→ Zk defined by l(v) = ∑ u∈N(v) l(uv) is a constant map. For a given graph G, the set of all k ∈ Z+ for which G is Zk-magic is called the integer-magic spectrum of G and is denoted by IM(G). In this paper we will consider trees whose diamet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2021

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-021-01176-5